Computational Studies of Selected Transition Metal Complexes as Potential Drug Candidates against the SARS-CoV-2 Virus

2021 
Abstract The earth has witnessed the greatest global health crisis due to the outbreak of the SARS-CoV-2 virus in late 2019, resulting in the pandemic COVID-19 with 3.38 million mortality and 163 million infections across 222 nations. Therefore, there is an urgent need for an effective therapeutic option against the SARS-CoV-2 virus. Transition metal complexes with unique chemical, kinetic and thermodynamic properties have recently emerged as the viable alternative for medicinal applications. Herein, the potential application of selected antiviral transition metal-based compounds against the SARS-CoV-2 virus was explored in silico. Initially, the transition metal-based antiviral compounds (1-5) were identified based on the structural similarity of the viral proteins (proteases, reverse transcriptase, envelop glycoproteins, etc.) of HIV, HCV, or Influenza virus with the proteins (S-protein, RNA-dependent RNA polymerase, proteases, etc) of SARS-CoV-2 virus. Hence the complexes (1-5) were subjected to ADME analysis for toxicology and pharmacokinetics report and further for the molecular docking calculations, selectively with the viral proteins of the SARS-CoV-2 virus. The molecular docking studies revealed that the iron-porphyrin complex (1) and antimalarial drug, ferroquine (2) could be the potential inhibitors of Main protease (Mpro) and spike proteins respectively of SARS-CoV-2 virus. The complex 1 exhibited high binding energy of ?11.74?kcal/mol with the Mpro of SARS-CoV-2. Similarly ferroquine exhibitred binding energy of ?7.43?kcal/mol against spike protein of SARS-CoV-2. The complex 5 also exhibited good binding constants values of ?7.67, ?8.68 and ?7.82?kcal/mol with the spike protein, Mpro and RNA dependent RNA polymerase (RdRp) proteins respectively. Overall, transition metal complexes could provide an alternative and viable therapeutic solution for COVID-19.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []