Analysis of Cadmium-Stress-Induced microRNAs and Their Targets Reveals bra-miR172b-3p as a Potential Cd2+-Specific Resistance Factor in Brassica juncea

2021 
The contamination of soil with high levels of cadmium (Cd) is of increasing concern, as Cd is a heavy metal element that seriously limits crop productivity and quality, thus affecting human health. (1) Background: Some miRNAs play key regulatory roles in response to Cd stress, but few have been explored in the highly Cd-enriched coefficient oilseed crop, Brassica juncea. (2) Methods: The genome-wide identification and characterization of miRNAs and their targets in leaves and roots of Brassica juncea exposed to Cd stress was undertaken using strand specific transcript sequencing and miRNA sequencing. (3) Results: In total, 11 known and novel miRNAs, as well as 56 target transcripts, were identified as Cd-responsive miRNAs and transcripts. Additionally, four corresponding target transcripts of six miRNAs, including FLA9 (Fasciclin-Like Arabinogalactan-protein 9), ATCAT3 (catalase 3), DOX1 (dioxygenases) and ATCCS (copper chaperone for superoxide dismutase), were found to be involved in the plant’s biotic stress pathway. We further validated the expression of three miRNA and six target genes in response to Cd, hydrargyrum (Hg), manganese (Mn), plumbum (Pb) or natrium (Na) stress and Mucor infection by qRT-PCR, and show that ATCCS and FLA9 were significantly and differentially regulated in the Cd-treated leaves. In addition, our results showed that DOX1 was obviously induced by Pb stress. Among the respective target miRNAs, bra-miR172b-3p (target for ATCCS) and ra-miR398-3p (target for FLA9) were down-regulated in Cd-treated leaves. (4) Conclusions: We identified bra-miR172b-3p as a potential Cd-specific resistant inhibitor, which may be negatively regulated in ATCCS in response to Cd stress. These findings could provide further insight into the regulatory networks of Cd-responsive miRNA in Brassica juncea.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    1
    Citations
    NaN
    KQI
    []