Simplified methods for designing thermo-active retaining walls

2020 
Thermo-active retaining structures are geotechnical structures employed to provide thermal energy to buildings for space heating and cooling through heat exchanger pipes embedded within the concrete structure. Consequently, the design of these structures needs to consider both the long-term energy efficiency as well as the thermo-mechanical response in terms of stability and serviceability. Transient finite element analyses can be carried out to evaluate the behaviour of thermo-active walls, where the heat exchanger pipes are explicitly modelled, thus requiring three-dimensional (3D) analyses. However, performing long-term 3D finite element analyses is computationally expensive. For this reason, in this study, new approaches are presented that allow the thermal or thermo-mechanical design of thermo-active walls to be carried out by performing two-dimensional (2D) plane strain analyses. Two methods, which are based on different design criteria, are proposed and their performance in replicating the three-dimensional behaviour is assessed. Furthermore, the factors affecting the 2D approximations for the two modelling approaches are evaluated, where particular emphasis is given to the influence of the simulated boundary condition along the exposed face of the retaining wall.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []