A GLUT1 Inhibitor-Based Fluorogenic Probe for Warburg Effect-Targeted Drug Screening and Diagnostic Imaging of Hyperglycolytic Cancers

2021 
ABSTRACT Increased expression of glucose transporters, especially GLUT1 has been proven to be involved in the Warburg effect. Therefore, GLUT1-targeted oncological approaches are being successfully employed for clinical tumor diagnostic imaging (e.g. the 18F-FDG/PET), drug delivery and novel anticancer drug development. Despite the long history of the Warburg effect-targeted cancer diagnosis, other than antibody labeling, there have been no imaging tools developed for direct detection of the GLUT1 expression. Herein, we report the new strategy of using a non-antibody GLUT1 binding probe for Warburg effect-based tumor detection and diagnostic imaging. By specifically inhibits the transport function of GLUT1, the newly designed fluorescent probe, CUM-5, was found to be a useful tool not only for sensitive GLUT1-mediated cancer cell detection, but also for cell-based high-throughput GLUT inhibitor screening. In in vivo studies, CUM-5 shows clear advantages including desirable tumor-to-normal tissue contrast and excellent tumor selectivity (Tm/Bkg and Tm/Torg), as well as high fluorescence stability (long response time) and ideal physiological biocompatibility. In particular, the GLUT1 inhibitor probe offers the potential use for glycolysis-based diagnostic imaging in triple-negative breast cancer which is claimed to have unsatisfactory results with FDG/PET diagnosis, thus remaining a highly metastatic and lethal disease with a need for sensitive and precise identification.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []