Numerical analysis and optimization of the performance of CO2-Plume Geothermal (CPG) production wells and implications for electric power generation

2022 
Abstract CO2-Plume Geothermal (CPG) power plants can produce heat and/or electric power. One of the most important parameters for the design of a CPG system is the CO2 mass flowrate. Firstly, the flowrate determines the power generated. Secondly, the flowrate has a significant effect on the fluid pressure drawdown in the geologic reservoir at the production well inlet. This pressure drawdown is important because it can lead to water flow in the reservoir towards and into the borehole. Thirdly, the CO2 flowrate directly affects the two-phase (CO2 and water) flow regime within the production well. An annular flow regime, dominated by the flow of the CO2 phase in the well, is favorable to increase CPG efficiency. Thus, flowrate optimizations of CPG systems need to honor all of the above processes. We investigate the effects of various operational parameters (maximum flowrate, admissible reservoir-pressure drawdown, borehole diameter) and reservoir parameters (permeability anisotropy and relative permeability curves) on the CO2 and water flow regime in the production well and on the power generation of a CPG system. We use a numerical modeling approach that couples the reservoir processes with the well and power plant systems. Our results show that water accumulation in the CPG vertical production well can occur. However, with proper CPG system design, it is possible to prevent such water accumulation in the production well and to maximize CPG electric power output.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []