Experimental Investigation on Energy Mechanism of Freezing-Thawing Treated Sandstone under Uniaxial Static Compression

2019 
To gain a further understanding of Freeze-Thaw weathering effect on the damage of sandstone from the perspective of energy analysis, uniaxial static compression tests were conducted on sandstone samples that suffered 0, 20, 60, 100 and 140 freezing-thawing cycles. Then total input strain energy, releasable elastic strain energy, dissipated energy and freezing-thawing induced damage of samples under uniaxial static compression tests were calculated and analyzed. In the mean time, the energy absorption of sandstone under dynamic loading tests (SHPB (Split-Hopkinson pressure bar) experiments) were cited and made a contrast with the dissipated energy of samples under uniaxial static compression tests. The results show that the tangent modulus, total input strain energy, releasable elastic strain energy and dissipated energy of samples decrease with Freezing-Thawing cycles go on, while the freezing-thawing induced damage grow with freezing-thawing cycles increase. In term of energy used for destroying rock samples in different test modes, less energy is needed for destroying samples in uniaxial static compression tests and it decreases with F-T cycles increase, while more energy is needed for destroying samples in dynamic impact loading and it increases with F-T cycles increase. In addition, the number of fragments of broken sample increase with the F-T cycles both in uniaxial static compression tests and dynamic loading tests, and sample under dynamic loading tests is more broken than sample under uniaxial static compression tests.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    7
    Citations
    NaN
    KQI
    []