Dihydropyrimidine Dehydrogenase and Thymidylate Synthase Polymorphisms and Their Association with 5-Fluorouracil/Leucovorin Chemotherapy in Colorectal Cancer

2004 
Abstract The causes of interpatient variation in severe toxicity resulting from treatment with weekly 5-fluorouracil (5-FU)/leucovorin (LV) are poorly understood. This study was undertaken to examine the contribution of commonly occurring polymorphisms in the dihydropyrimidine dehydrogenase (DPYD) gene to interpatient variability in 5-FU pharmacokinetics and toxicity. Patients with stage III/IV colorectal cancer were treated by bolus intravenous (I.V.) injection with 500 mg/m 2 doses of 5-FU and LV once every week. The pharmacokinetics of 5-FU was determined on weeks 1 and 4. Genotyping assays were developed for 8 polymorphisms in the DPYD gene. A well-characterized functional polymorphism in the 5′ untranslated region of the thymidylate synthase (TS) gene was also analyzed. A cohort of 22 patients (15 male, 7 female) with a median age of 61 years was evaluated. Although there was no relationship between the area under the plasma concentration—time curve (AUC) for the first dose of 5-FU and worstgrade toxicity during the first cycle of therapy, 3 of the 4 patients in whom the AUC on week 4 was ≥5 μgh/mL greater than the value for the first dose experienced grade 3/4 toxicity during subsequent treatment. Among the 8 polymorphisms in the DPYD gene, 7 were found to vary in the study population but none were significantly associated with the AUC of 5-FU. There was no relationship between the DPYD and TS genotypes examined and 5-FU toxicity. Extensive polymorphism in the DPYD gene was observed; however, no conclusive correlations existed between the DPYD and TS genotype and 5-FU pharmacokinetics or toxicity. Decreases in 5-FU clearance in certain patients may provide insight into the increased toxicity following repetitive cycles of treatment with weekly I.V. bolus 5-FU. The present study offers useful themes for undertaking larger prospective pharmacogenetic studies in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    20
    Citations
    NaN
    KQI
    []