Effect of Mobility and Convection-Dominated Flow on Evaluation of Reservoir Dynamic Performance by Fast Marching Method

2017 
The determination of optimum well locations and number of wells needed during green field development always comes with unprecedented challenges because of the geological uncertainty, and the non-linear relationship between the input and output variables associated with real reservoirs. These variables are key sources affecting the viability and validity of the results. Reservoir simulation is one of the least uncertain and most reliable prediction tools for dynamic performance of any reservoir. As field development progresses, more information becomes available, enabling us to continually update and, if needed, correct the reservoir description. The simulator can then be used to perform a variety of exercises or scenarios, with the goal of optimizing field development and operation strategies. Optimizing well numbers or locations under such geological uncertainty is achieved by using a reservoir simulator under several geological realizations, and these require multiple reservoir simulations to estimate the field performance for a given well configuration at a given location. Using reservoir simulation becomes impractical when dealing with real field cases incorporating multi-million cells because of the associated CPU demand constraints (Bouzarkouna et al. 2011). For instance, to determine the optimum well locations in a giant field that will result in the most efficient production rate scenario, one requires a large number of simulation runs for different realizations and well configurations. A large amount of runs is technically difficult to achieve even if we have access to super computers. The fast marching method (FMM), which is based on a solution of Eikonal equation, can be used to find the optimum well locations in a green oil field by tracking the pressure distribution in the reservoir. The FMM will enable us to calculate the radius of investigation or pressure front as a function of time without running any simulation and with a high degree of accuracy under primary depletion conditions. The main purpose of this paper is to study the effect of mobility on FMM and extend the investigation of its validity to include two-phase flow and convection-dominated flow and evaluate the ability of the methodology to predict the dynamic performance of the reservoir during pseudo-steady-state flow regime.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []