Intracellular uptake of and sensing with SERS-active hybrid exosomes: insight into a role of metal nanoparticles.

2020 
Aim: Exosomes, known as novel biocompatible vesicles, have attracted much interest. This makes it urgent to observe exosomes at the visually cellular or subcellular levels. Methods: Herein, we constructed a new kind of exosome/metal nanohybrid and employed a surface-enhanced Raman scattering technique to study the intracellular behaviors of hybrid exosomes. Results: Experimental results revealed that hybrid exosomes were internalized mainly through clathrin-mediated endocytosis and thereafter transported to lysosomes. The metal nanoparticles in the hybrid were demonstrated to have little effect on exosomal characteristics while serving as surface-enhanced Raman scattering generators. Conclusion: This study is significant for removing the barrier in designing programmable exosome/metal nanohybrids, which will greatly improve the utility of exosomal nanohybrids for therapeutics, such as multifunctional drug-delivery systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    4
    Citations
    NaN
    KQI
    []