The effect of isoflavaspidic acid PB extracted from Dryopteris fragrans (L.) Schott on planktonic and biofilm growth of dermatophytes and the possible mechanism of antibiofilm

2019 
Abstract Ethnopharmacological relevance Dryopteris fragrans (L.) Schott (D. fragrans), a deciduous perennial herb, has been traditionally used for treatment of various skin diseases in Heilongjiang province of China for many years. Phloroglucinol derivatives extracted from D. fragrans were the most effective fraction against dermatophytes. Isoflavaspidic acid PB is a typically phloroglucinol derivative which extracted from D. fragrans and has been reported to exert anti-fungal activities against several dermatophytes. Aim of the study. This study aimed to evaluate anti-fungal and anti-biofilm activity of isoflavaspidic acid PB on planktonic and biofilm growth of dermatophytes and explore possible mechanisms of anti-biofilm. Materials and methods Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of isoflavaspidic acid PB against 25 isolates of dermatophytes were determined by the Clinical and Laboratory Standards Institute (CLSI) M38-A2 method. The effects of isoflavaspidic acid PB on dermatophytes biofilm formation and pre-formed biofilm were assessed by 2.3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[carbonyl (phenylamino)]-2H-tetrazolium hydroxide (XTT) assay. Morphology of mature biofilm were observed by Scanning Electron Microscope (SEM). Biomass, exopolysaccharide and ergosterol content of mature biofilm were analyzed by gravimetric analysis, anthranone sulfuric acid method and Ultra Performance Liquid Chromatography (UPLC) assay respectively. Result The MIC and MFC ranges of isoflavaspidic acid PB against 25 isolates of dermatophytes were 20–80 μg/mL and 40–80 μg/mL respectively. Isoflavaspidic acid PB (2 MIC) inhibited not only Trichophyton biofilm formation (54.8% ∼ 81.2%) but also the metabolic activity of mature biofilm (20.7% ∼ 44.2%). The result of SEM showed that isoflavaspidic acid PB (8 MIC) could destroy the morphology of hyphae seriously. Comparing with control group, biomass, exopolysaccharide and ergosterol content of the mature biofilm under isoflavaspidic acid PB (8 MIC) were significantly decreased (P  Conclusion Isoflavaspidic acid PB had anti-fungal and fungicidal activities against dermatophytes. Isoflavaspidic acid PB could inhibit the biofilm of Trichophyton. The mechanism might be related to the decline of the biofilm biomass, exopolysaccharide and ergosterol content. These results showed that isoflavaspidic acid PB could be explored for promising anti-biofilm drugs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    3
    Citations
    NaN
    KQI
    []