Microbial enzymes used in prodrug activation for cancer therapy: Insights and future perspectives.

2020 
Enzyme prodrug therapy has gained momentum in the recent years due to their ability to improve therapeutic index (benefits versus toxic side-effects) and efficacy of chemotherapy in cancer treatment. Inactive prodrugs used in this system are converted into active anti-cancerous drugs by enzymes, specifically within the tumor cells. This therapy involves three components namely prodrug, enzyme and gene delivery vector. Past reports have clearly indicated that the choice of enzyme used, is the major determinant for the success of this therapy. Generally, enzymes from non-human sources are employed to avoid off-target toxicity. Exogenous enzymes also give a better control to the clinician regarding the calibration of treatment by site-specific initiation. Amongst these exo-enzymes, microbial enzymes are preferred due to their high productivity, stability and ease of manipulation. The present review focuses on the commonly used microbial enzymes particularly cytosine deaminase, nitroreductase, carboxypeptidase, purine nucleoside phosphorylase in prodrug activation therapy. Various aspects viz. source of the enzymes, types of cancer targeted, mode of action and efficacy of the enzyme/prodrug system, efficient vectors used and recent research developments of each of these enzymes are comprehensively elaborated. Further, the results of the clinical trials and various strategies to improve their clinical applicability are also discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []