Size Effects on Charge Transport Mechanisms and Magnetotransport Properties of Pr 0.67 Sr 0.33 MnO 3 Nanoparticles

2020 
This paper covers a detailed study of the sintering temperature (TS) effect on the electrical and magnetotransport properties of Pr0.67Sr0.33MnO3 nanoparticles prepared by sol–gel method. The temperature dependence of resistivity displays a metal–insulator transition with increasing temperature. The electrical resistivity is strongly affected by particle size. The resistivity minimum at low temperature is associated to electron–electron coulombic interactions. Magnetotransport analysis was carried out using a phenomenological percolation model for all our samples. The obtained results indicate that a percolation model is not suitable for samples presenting high magnetic disorder. The magnetoresistance (MR) can be modulated by particle size effect. We have recorded considerable MR values (−MR(T) = 34% at 10 K for a 1T field when TS = 850°C, −MR(T) = 33% at 290 K for a 2T field when TS = 1000°C and −MR(H) = 33% at 5 K for a 1T field when TS = 700°C). The considerable MR values indicate the possibility of using these samples for several technological applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    4
    Citations
    NaN
    KQI
    []