Effect of Ligand Coordination on the Structures and Visible-Light Photocatalytic Activity of Manganese Vanadate Hybrids

2013 
A new manganese–vanadate hybrid structure, Mn(H2O)(bpy)V2O6 (I; bpy = 2,2′-bipyridine), has been synthesized via hydrothermal methods and characterized by single crystal X-ray diffraction [P21/n, Z = 4, a = 6.8557(4) A, b = 10.4900(6) A, c = 19.7921(13) A, β = 96.419(4)°], infrared spectroscopy, thermogravimetric analysis, magnetic susceptibility measurements, and UV–vis diffuse reflectance. The structure is comprised of manganese vanadate layers with 2,2’-bipyridine ligands coordinated to the Mn(II) cations. The water molecules coordinated to the manganese sites can be reversibly desorbed at ∼190 °C with the formation of a new hybrid structure before then further decomposing to MnV2O6 upon heating to 300 °C. Notably, I undergoes a reversible structural transformation to Mn(bpy)V4O11(bpy) (II) under hydrothermal conditions. This structural transformation results from additional bpy-ligand coordination to 1/4 of the vanadium sites. Magnetic data indicate Mn(II) cations in both I and II are high spin (S = 5...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    22
    Citations
    NaN
    KQI
    []