A Flow-Extension Tethered Particle Motion Assay for Single-Molecule Proteolysis

2019 
Regulated proteolysis of signaling proteins under mechanical tension enables cells to communicate with their environment in a variety of developmental and physiologic contexts. The role of force in inducing proteolytic sensitivity has been explored using magnetic tweezers at the single-molecule level with bead-tethered assays, but such efforts have been limited by challenges in ensuring that beads not be restrained by multiple tethers. Here, we describe a multiplexed assay for single-molecule proteolysis that overcomes the multiple-tether problem using a flow-extension strategy on a microscope equipped with magnetic tweezers. Particle tracking and computational sorting of flow-induced displacements allow assignment of tethered substrates to singly captured and multiply tethered bins, with the fraction of fully mobile, single-tether substrates depending inversely on the concentration of substrate loaded on the coverslip. Computational exclusion of multiple-tether beads enables robust assessment of on-targe...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    2
    Citations
    NaN
    KQI
    []