Printable Smart Pattern for Multifunctional Energy-Management E-Textile

2019 
Summary Electronic textile (E-textile) has drawn tremendous attention with the development of flexible and wearable electronics in recent years. Herein, we report the direct printing of E-textile composed of core-sheath fibers by employing a 3D printer equipped with a coaxial spinneret. Customer-designed core-sheath fiber-based patterns can be printed on textile for various purposes. For demonstration, we used carbon nanotubes (CNTs) as a conductive core and silk fibroin (SF) as a dielectric sheath, and fabricated a CNTs@SF core-sheath fiber-based smart pattern, which was further used as a triboelectricity nanogenerator textile. The smart textile could harvest biomechanical energy from human motion and achieve a power density as high as 18 mW/m 2 . We also demonstrated the printing of a supercapacitor textile for energy storage. The direct printing of smart patterns on textile may contribute to the large-scale production of self-sustainable E-textile with integrated electronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    64
    Citations
    NaN
    KQI
    []