Magnetic resonance imaging of experimental testicular torsion.

2005 
Summary We investigated the feasibility of contrast enhanced (CE)-dynamic magnetic resonance imaging (MRI) for the detection of testicular torsion induced hypoperfusion in an experimental rat model. Adult Sprague–Dawley rats were subjected to unilateral testicular torsion of 360 or 720 degrees. After 1 h, the tail veins of the anaesthetized rats were cannulated and T2 -, diffusion-weighted and T1-weighted CE-dynamic MRI were subsequently performed by a 1.5 T MRI scanner. On apparent diffusion coefficient (ADC) images, the region of interest values of the ischaemic and control testes was compared. From CE-dynamic MR images, the maximal slopes of contrast enhancement were calculated and compared. In testicular torsion of 360 degrees, the maximal slope of contrast enhancement was 0.072%/s vs. 0.47%/s in the contralateral control testis (p < 0.001). A torsion of 720 degrees diminished the slope of contrast enhancement to 0.046%/s vs. 0.37%/s in the contralateral testis (p < 0.001). Diminished blood flow during torsion also followed in decreased ADC values in both 360 degrees (12.4% decrease; p < 0.05) and 720 degrees (10.8% decrease; p < 0.001) of torsion. Torsion of the testis causes ipsilateral hypoperfusion and decreased gadolinium uptake in a rat model that can be easily detected and quantified by CE-dynamic MRI. In diffusion-weighted MRI images, acute hypoperfusion results in a slight decrease of ADC values. Our results suggest that CE-dynamic MRI in combination with diffusion-weighted MRI can be used to detect compromised blood flow due to acute testicular torsion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    13
    Citations
    NaN
    KQI
    []