Assessment of the fatality rate and transmissibility taking account of undetected cases during an unprecedented COVID-19 surge in Taiwan

2021 
BackgroundDuring the COVID-19 outbreak in Taiwan between May 11 and June 20, 2021, the observed fatality rate (FR) was 5.3%, higher than the global average at 2.1%. The high number of reported deaths suggests that hospital capacity was insufficient. However, many unexplained deaths were subsequently identified as cases, indicating that there were a few undetected cases, hence resulting in a higher estimate of FR. Estimating the number of total infected cases or knowing how to reduce the undetected cases can allow an accurate estimation of the fatality rate (FR) and effective reproduction number (Rt). MethodsAfter adjusting for reporting delays, we estimated the number of undetected cases using reported deaths that were and were not previously detected. The daily FR and Rt were calculated using the number of total cases (i.e. including undetected cases). A logistic regression model was developed to predict the detection ratio among deaths using selected predictors from daily testing and tracing data. ResultsThe estimated true daily case number at the peak of the outbreak on May 22 was 897, which was 24.3% higher than the reported number, but the difference became less than 4% on June 9 and afterward. After taking account of undetected cases, our estimated mean FR (4.7%) was still high but the daily rate showed a large decrease from 6.5% on May 19 to 2.8% on June 6. Rt reached a maximum value of 6.4 on May 11, compared to 6.0 estimated using the reported case number. The decreasing proportion of undetected cases was associated with the increases in the ratio of the number of tests conducted to reported cases, and the proportion of cases that are contact-traced before symptom onset. ConclusionsIncreasing testing capacity and tracing efficiency can lead to a reduction of hidden cases and hence improvement in epidemiological parameter estimation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []