Wolf 1130: A Nearby Triple System Containing a Cool, Ultramassive White Dwarf

2018 
Following the discovery of the T8 subdwarf WISE J200520.38+542433.9 (Wolf 1130C), which has a proper motion in common with a binary (Wolf 1130AB) consisting of an M subdwarf and a white dwarf, we set out to learn more about the old binary in the system. We find that the A and B components of Wolf 1130 are tidally locked, which is revealed by the coherence of more than a year of V-band photometry phase-folded to the derived orbital period of 0.4967 days. Forty new high-resolution, near-infrared spectra obtained with the Immersion Grating Infrared Spectrometer provide radial velocities and a projected rotational velocity (v sin i) of 14.7 ± 0.7 km s^(-1) for the M subdwarf. In tandem with a Gaia parallax-derived radius and verified tidal locking, we calculate an inclination of i = 29° ± 2°. From the single-lined orbital solution and the inclination we derive an absolute mass for the unseen primary (1.24^(+0.19)_(-0.15) M ⊙). Its non-detection between 0.2 and 2.5 μm implies that it is an old (>3.7 Gyr) and cool (T_(eff) 100 times the tertiary mass and the survival of the system through the common-envelope phase, where ~80% of the system mass was lost, is remarkable. Our analysis of Wolf 1130 allows us to infer its formation and evolutionary history, which has unique implications for understanding low-mass star and brown dwarf formation around intermediate-mass stars.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    187
    References
    24
    Citations
    NaN
    KQI
    []