Iterative denoising accelerated 3D SPACE FLAIR sequence for brain MR imaging at 3T.

2021 
Abstract Purpose The purpose of this study was to prospectively evaluate image quality of three-dimensional fluid attenuated inversion recovery (3D-FLAIR) sequence acquired with a high acceleration factor and reconstructed with iterative denoising (ID) for brain magnetic resonance imaging (MRI) at 3-T. Material and methods Patients with brain tumor who underwent brain MRI were consecutively included. Two 3D-FLAIR sequences were successively performed for each patient. A first conventional FLAIR acquisition (conv-FLAIR) was performed with an acceleration factor of 6. The second acquisition was performed with an increased acceleration factor of 9. Two series one without ID (acc-FLAIR) and one with ID (acc-FLAIR-ID) were reconstructed. Two neuroradiologists independently assessed image quality, deep brain nuclei visualization and white matter/gray matter (WM/GM) differentiation on a 4-point scale. Results Thirty patients with brain tumor were consecutively included in this study. There were 16 women and 14 men with a mean age of 54 ± 17 (SD) years (range: 22–78 years). Scanning time of Acc-FLAIR-ID and Acc-FLAIR (4 min 40 sec) was 37% shorter than that of conv-FLAIR (2 min 50 sec) (P Conclusion Scanning time of 3D-FLAIR sequence using a high acceleration factor reconstructed with ID algorithm can be reduced by 37% while preserving image quality for brain MRI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []