Influence of Surgical Methods on Hemodynamics in Supravalvular Aortic Stenosis: A Computational Hemodynamic Analysis.

2021 
We compared differences in the hemodynamic parameters of multiple surgical techniques for supravalvular aortic stenosis (SVAS). A three-dimensional model was reconstructed based on a patient’s CT scan. Virtual McGoon, Doty, and Brom repairs were completed using computer-aided design (CAD). Hemodynamic parameters were calculated through computational fluid dynamics (CFD). The velocity profile and wall shear stress (WSS) showed the blood flow pattern. Energy loss (EL) and energy efficiency (EE) were calculated to estimate the cardiac workload. The perioperative blood flow ratio (BFR) of brachiocephalic vessels and coronary arteries was calculated. The preoperative flow velocity was abnormally high (> 5.0 m/s). High WSS was detected at the sinotubular junction (STJ), and its preoperative distribution in the aorta was uneven. High-speed flow disappeared after each of the three operations. The WSS distribution at the aortic root was consistent with the postoperative STJ structure of each operation. EL in the systolic phase decreased postoperatively (Original: 634 mW, McGoon: 218 mW, Doty: 278 mW, Brom: 255 mW). No significant difference in brachiocephalic BFR was detected among the different techniques. A slightly increased coronary BFR (Original: 7.56%, McGoon: 7.99%, Doty: 8.55%, Brom: 8.89%) was detected. McGoon, Doty, and Brom repair each effectively restored stable blood flow and greatly improved EE. The best WSS distribution and coronary blood supply were achieved after Brom repair due to its ability to reconstruct the symmetrical aortic root structure. CFD combined with a virtual operation is a promising method in surgical planning and optimization for SVAS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []