The Voltage Regulation of Boost Converters Using Dual Heuristic Programming

2020 
In this paper, a dual heuristic programming controller is proposed to control a boost converter. Conventional controllers such as proportional-integral-derivative (PID) or proportional-integral (PI) are designed based on the linearized small-signal model near the operating point. Therefore, the performance of the controller during start-up, load change, or input voltage variation is not optimal since the system model changes by varying the operating point. The dual heuristic programming controller optimally controls the boost converter by following the approximate dynamic programming. The advantage of the DHP is that the neural network–based characteristic of the proposed controller enables boost converters to easily cope with large disturbances. A DHP with a well-trained critic and action networks can perform as an optimal controller for the boost converter. To compare the effectiveness of the traditional PI-based and the DHP boost converter, the simulation results are provided.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    10
    Citations
    NaN
    KQI
    []