Dynamic shear behaviors and microstructural deformation mechanisms in FeNiAlC dual-phase high strength alloy

2021 
Adiabatic shear band (ASB) is a common failure mechanism of metals and alloys under high strain rate dynamic loading. The hat-shaped samples of Fe-24.86Ni-5.8Al-0.38C dual-phase steel with different microstructures were impacted by the Hopkinson pressure bar device to investigate their dynamic shear behaviors and microstructural deformation mechanisms. The coarse grained (CG) structure after solution treatment was subjected to cold rolling (CR) in order to obtain various microstructures. The evolution of microstructure during dynamic shear deformation was extensively studied using transmission electron microscopy (TEM) and scanning electron microscope (SEM). The results revealed that the FeNiAlC dual-phase steel has excellent dynamic shear properties with dynamic shear strength of 1.3 GPa and uniform dynamic shear strain of 1.5. The dual-phase steel was found to be composed of austenite phase (γ) and around 20% martensite phase (α) before deformation. The deformation process was found to be dominated by dislocations slip and twinning. Moreover, martensite transformation was found to be suppressed due to the high strain rates. ASBs were observed to be formed in all samples with various microstructures after impact, and dynamic recrystallization was found to occur with formed ultra-fined grains of about 300 nm and without transformation in ASBs. For the width of ASBs, the theoretical result (about 12.3 μm) was found to be in good agreement with the experimental value (about 14.6 μm) in CR samples. However, the measured width of ASBs was found to be about 15.8 μm, which is far smaller to the calculated value (about 30 μm) in CG samples. This may be attributed to the incompletely adiabatic conditions in CG samples. The adiabatic temperature rise due to the plastic work was found to be about 720 K (for CG sample) and 190 K (for CR sample). Through the analysis of the experimental results and the theory of the thermoplastic model, it can be concluded that the adiabatic temperature rise is not the only factor for ASB formation in the course of impact loading, and the localized deformation induced microstructure evolution in materials should also be considered.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []