Effects of compressive stresses on torsional fatigue

2014 
Abstract Rolling contact fatigue (RCF) is the dominant failure mode in properly installed and maintained ball and roller element bearings. Lundberg and Palmgren in their seminal publication indicated that this failure is due to the alternating component of shear stress. Thus, torsional fatigue experiments have been used to predict the RCF behavior of bearing materials. In non-conformal contacts, due to Hertzian pressure the contact experiences large compressive stresses. Hence, it is critical to take into account the effect of these large compressive stresses in torsional fatigue to better simulate RCF conditions. This paper presents an investigation of torsional fatigue of bearing steels, while the effects of combined compressive stress and its relevance to material behavior in rolling contact fatigue is examined. An MTS test rig was used to investigate the fatigue life of several bearing steels and their failure mechanisms were evaluated through fractography. Then the effects of compressive stresses on torsional fatigue were investigated. A set of custom designed clamp fixtures were designed, developed and used to apply Hertzian pressures of up to 2.5 GPa on the torsion specimens. The experimental results indicate that at high cycle fatigue, a combination of shear and biaxial compression, by application of Hertzian contact, is more detrimental to fatigue life than shear alone; however, as expected it has little to negligible effects in the low cycle fatigue regime. Also the failure mode changes such that fracture planes form a cup and cone pair with multiple internal cracks as opposed to helical planes observed in pure torsion which are formed by a single crack. A 3D finite element model (using ABAQUS) was developed to investigate the fatigue damage accumulation, crack initiation, and propagation in the material. The topology of steel microstructure is modeled employing a randomly generated Voronoi tessellation wherein each Voronoi cell represents a material grain and the boundaries between the cells are assumed to represent the weak plane in the steel matrix. Continuum damage mechanics (CDM) was used to model material degradation during the fatigue process. A comprehensive damage evolution equation is developed to account for the effect of mean stress on fatigue. The model predicts the fatigue lives and crack patterns successfully both in presence and absence of compressive stresses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    10
    Citations
    NaN
    KQI
    []