Numerical modelling of gas-liquid flow phenomena in horizontal pipelines

2015 
Gas-liquid flows are omnipresent in industrial and environmental processes. Examples are the transportation of petroleum products [1, 2], the cooling of nuclear reactors [3, 4], the operation of absorbers [5], distillation columns [6], gas lift pumps [7] and many mores. Different input parameters induce topologically different flow patterns with different flow character and behaviour [7, 8] . The present study concentrate to diabatic incompressible two-phase flow in horizontal pipeline with separated character [9, 10] (Ugas < 10m/s and Uliquid < 0:2m/s) such as stratified wavy flow regime including typical multiphase instability (Kelvin-elmholtz instability) [11, 12]. The Proper Orthogonal Decomposition (POD) [13], introduced by Lumpay (1967) [14] was used to extract synthetic information essential to understand and to model flow dynamics phenomena. POD in this study are used to identify flow structure in the horizontal pipeline specially under transient of separated flow regimes. The snapshot matrix are reconstruct for specific flow sections and regimes. Present decomposition method, in this case used to analyse CFD data, are originally testing and developing for future using to analyse experimental data obtained by process tomography system [15].
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []