Exploring dust heterogeneous chemistry over China: Insights from field observation and GEOS-Chem simulation.

2021 
Abstract Dust heterogeneous chemistry plays an important role in tropospheric chemistry, but its parameterization in numerical models is often quite simplified, which hampers accurate prediction of particulate matter and its chemical component. In this study, we investigate the evolution of dust heterogeneous chemical process and its potential impacts on gaseous and aerosol components during a dust pollution episode from March 27 to April 2, 2015 over North China. Based on field measurements, the significant role of relative humidity (RH) in dust heterogeneous chemistry is found and a RH-dependent parameterization for uptake coefficients of HNO3 and SO2 is incorporated in GEOS-Chem to reproduce the dust heterogeneous chemical process. During the study period, observed dust sulfate (DSO4) and dust nitrate (DNIT) exhibit maximum concentrations of 9.1 and 22.8 μg m-3 respectively, accompanied by high RH and gaseous precursor concentrations. DSO4 concentrations are positively related to RH. The observed dust sulfate oxidation ratio (DSOR) is elevated evidently with increased RH, especially when RH is higher than ~40%, implying that enhanced RH could promote heterogeneous oxidation of SO2 to DSO4. Model simulation shows that when incorporating the RH-dependent parameterization, DNIT and DSO4 are generally well captured and the model performance of total sulfate oxidation ratio (TSOR) and total nitrate oxidation ratio (TNOR) are improved. High contribution of DNIT and DSO4 are found to be located over the regions close to source areas (>60%) and downwind regions (>40%), respectively. Sensitivity results show that SO2 and HNO3 reduce by 2-24 μg m-3 and 1-18 μg m-3 when considering dust heterogeneous impacts, thus leading to reduction in non-dust sulfate and non-dust nitrate concentrations. As a result, simulated NH3 increases and ammonium reduces by more than 20%. Our study indicates that the contribution of heterogeneous reactions to sulfate formation is 20-30% over North China.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    114
    References
    1
    Citations
    NaN
    KQI
    []