NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling

1999 
Although hepatitis C virus (HCV) infection is an emerging global epidemic causing severe liver disorders, the molecular mechanisms of HCV pathogenesis remain elusive. The NS5A nonstructural protein of HCV contains several proline-rich sequences consistent with Src homology (SH) 3-binding sites found in cellular signaling molecules. Here, we demonstrate that NS5A specifically bound to growth factor receptor-bound protein 2 (Grb2) adaptor protein. Immunoblot analysis of anti-Grb2 immune complexes derived from HeLa S3 cells infected with a recombinant vaccinia virus (VV) expressing NS5A revealed an interaction between NS5A and Grb2 in vivo. An inactivating point mutation in the N-terminal SH3 domain, but not in the C-terminal SH3 domain, of Grb2 displayed significant diminished binding to NS5A. However, the same mutation in both SH3 regions completely abrogated Grb2 binding to NS5A, implying that the two SH3 domains bind in cooperative fashion to NS5A. Further, mutational analysis of NS5A assigned the SH3-binding region to a proline-rich motif that is highly conserved among HCV genotypes. Importantly, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) was inhibited in HeLa S3 cells infected with NS5A-expressing recombinant VV but not recombinant VV control. Additionally, HeLa cells stably expressing NS5A were refractory to ERK1/2 phosphorylation induced by exogenous epidermal growth factor. Moreover, the coupling of NS5A to Grb2 in these cells was induced by epidermal growth factor stimulation. Therefore, NS5A may function to perturb Grb2-mediated signaling pathways by selectively targeting the adaptor. These findings highlight a viral interceptor of cellular signaling with potential implications for HCV pathogenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    211
    Citations
    NaN
    KQI
    []