Photodynamics of Schiff Base Salicylideneaniline: Trajectory Surface-Hopping Simulations

2013 
We report a computational study on the photochemistry of the prototypical aromatic Schiff base salicylideneaniline in the gas phase using static electronic structure calculations (TDDFT, OM2/MRCI) and surface-hopping dynamics simulations (OM2/MRCI). Upon photoexcitation of the most stable cis-enol tautomer into the bright S1 state, we find an ultrafast excited-state proton transfer that is complete within tens of femtoseconds, without any C═N double bond isomerization. The internal conversion of the resulting S1 cis-keto species is initiated by an out-of-plane motion around the C–C single bond, which guides the molecule toward a conical intersection that provides an efficient deactivation channel to the ground state. We propose that the ease of this C–C single bond rotation regulates fluorescence quenching and photocoloration in condensed-phase environments. In line with previous work, we find the S1 cis-keto conformer to be responsible for fluorescence, especially in rigid surroundings. The S0 cis-keto s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    59
    Citations
    NaN
    KQI
    []