Localization of methane distributions by spectrally tuned infrared imaging

1999 
We present a novel method, the Gas Imaging (GIm) method, developed for the localization of gas distributions in the atmosphere. The method is suitable for the detection of a gases which exhibit at least one absorption line in the IR spectral range. In this paper the GIm method is demonstrated for methane released into the atmosphere from leaks along natural gas pipelines. Methane distributions in the atmosphere around the leaky pipeline are detected and visualized by spectrally tuned IR imaging. In contrast to conventional techniques which utilize laser radiation sources or scanning, we irradiate the overall region under investigation by 1 kW halogen lamps. The scene background is subtracted by a real-time computer evaluation of the image. The methane gas emitted from the leak creates a flickering cloud in the image which is easily recognized. Methane concentrations as low as 0.03 percent by volume are visible. The method was successfully tested under realistic conditions on a buried pipeline by a natural gas provider.© (1999) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []