Predominant Api m 10 sensitization as risk factor for treatment failure in honey bee venom immunotherapy

2016 
Background Component resolution recently identified distinct sensitization profiles in honey bee venom (HBV) allergy, some of which were dominated by specific IgE to Api m 3 and/or Api m 10, which have been reported to be underrepresented in therapeutic HBV preparations. Objective We performed a retrospective analysis of component-resolved sensitization profiles in HBV-allergic patients and association with treatment outcome. Methods HBV-allergic patients who had undergone controlled honey bee sting challenge after at least 6 months of HBV immunotherapy (n = 115) were included and classified as responder (n = 79) or treatment failure (n = 36) on the basis of absence or presence of systemic allergic reactions upon sting challenge. IgE reactivity to a panel of HBV allergens was analyzed in sera obtained before immunotherapy and before sting challenge. Results No differences were observed between responders and nonresponders regarding levels of IgE sensitization to Api m 1, Api m 2, Api m 3, and Api m 5. In contrast, Api m 10 specific IgE was moderately but significantly increased in nonresponders. Predominant Api m 10 sensitization (>50% of specific IgE to HBV) was the best discriminator (specificity, 95%; sensitivity, 25%) with an odds ratio of 8.444 (2.127-33.53; P  = .0013) for treatment failure. Some but not all therapeutic HBV preparations displayed a lack of Api m 10, whereas Api m 1 and Api m 3 immunoreactivity was comparable to that of crude HBV. In line with this, significant Api m 10 sIgG 4 induction was observed only in those patients who were treated with HBV in which Api m 10 was detectable. Conclusions Component-resolved sensitization profiles in HBV allergy suggest predominant IgE sensitization to Api m 10 as a risk factor for treatment failure in HBV immunotherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    65
    Citations
    NaN
    KQI
    []