Controlled release of FGF-2 using fragmin/protamine microparticles and effect on neovascularization

2009 
Water-insoluble fragmin/protamine microparticles of about 0.5–1 μm in diameter were prepared by simple mixing of low-molecular-weight heparin (fragmin) with protamine. We investigated the capability of these microparticles to immobilize fibroblast growth factor (FGF)-2, to protect FGF-2 against degradation, to enhance FGF-2 activity, and to facilitate controlled release of FGF-2. FGF-2 bound to the fragmin/protamine microparticles with high affinity (Kd = 2.08 × 10−9M) and the half-life of FGF-2-activity was prolonged substantially through binding of FGF-2 to the microparticles, by protection of FGF-2 from inactivation by heat and proteolysis. After subcutaneous injection into the back of mice, the fragmin/protamine microparticles underwent biodegradation and disappeared in about 2 weeks. A similar injection of FGF-2-containing microparticles resulted in significant neovascularization and fibrous tissue formation near the injection site after 1 week. These results indicate that controlled release of biologically active FGF-2 occurs through both slow diffusion and biodegradation of the microparticles, with subsequent induction of neovascularization. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    62
    Citations
    NaN
    KQI
    []