One-Pot Synthesis of Superfine Core–Shell Cu@metal Nanowires for Highly Tenacious Transparent LED Dimmer

2016 
We demonstrate a one-pot, low-cost, and scalable method for fast synthesis of superfine and uniform core–shell Cu nanowires (NWs) coated with optional metals and/or alloy. Cu NWs in high aspect ratio (>3000) were synthesized through an oleylamine-mediated solution method, and tunable shell coating was performed by injecting metal-organic precursors at the last stage of reaction. Superfine Cu@metal NWs (Ti, Zn, V, Ni, Ag, NiZn, etc) were achieved in diameter of ∼30 nm and length of ∼50 μm. Transparent conductive films were obtained by imprinting method, showing high optoelectronic performance (51 Ω/sq at 93% transmittance), high mechanical tenacity over bending, twisting, stretching, and compressing, and robust antioxidant ability (high temperature and high humidity). A transparent film dimmer for light-emitting diode (LED) lighting was fabricated with the stretchable Cu@Ti NWs network. The LED luminance could be accurately tuned by the deformation strain of Cu@Ti NWs film.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    18
    Citations
    NaN
    KQI
    []