Proactive and AoI-aware Failure Recovery for Stateful NFV-enabled Zero-Touch 6G Networks: Model-Free DRL Approach

2021 
In this paper, we propose a Zero-Touch, deep reinforcement learning (DRL)-based Proactive Failure Recovery framework called ZT-PFR for stateful network function virtualization (NFV)-enabled networks. To this end, we formulate a resource-efficient optimization problem minimizing the network cost function including resource cost and wrong decision penalty. As a solution, we propose state-of-the-art DRL-based methods such as soft-actor-critic (SAC) and proximal-policy-optimization (PPO). In addition, to train and test our DRL agents, we propose a novel impending-failure model. Moreover, to keep network status information at an acceptable freshness level for appropriate decision-making, we apply the concept of age of information to strike a balance between the event and scheduling-based monitoring. Several key systems and DRL algorithm design insights for ZT-PFR are drawn from our analysis and simulation results. For example, we use a hybrid neural network, consisting long short-term memory layers in the DRL agent’s structure, to capture impending-failure’s time dependency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []