Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science

2020 
Abstract Recent remarkable advances in the field of nanotechnology has been achieved in the last few years especially in the fabrication of sensors that have wide number of applications. Nanomaterials are the foundation of nanotechnology that are measured on nanoscale. Carbon nanotubes (CNTs) are tube-like materials that are made up of carbon with a diameter calculating on a nanometer scale. They are originated from graphite sheet and these graphite layers seems similar to a rolled up non-stop unbreakable hexagonal like mesh structure and the carbon molecules appears at the apexes of the hexagonal structures. Depending upon the number of carbon layers, carbon nanotubes can be single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs) and multi-walled carbon nanotubes (MWCNTs). Carbon nanotubes (CNTs) can be fabricated by three main methods i.e., chemical vapor deposition, electric arc method and laser deposition method. Carbon nanotubes exhibit various characteristic properties such as high elasticity, high thermal conductivity, low density and they are chemically more inert etc. Due to these interesting properties, carbon nanotubes have played a significant role in the field of nanotechnology, electronics, optics and other fields of materials science. Carbon nanotubes are being positively applied in drug delivery, sensing, water treatment etc. Functionalization of their surface can result in highly soluble materials, which can be further derivatized with active molecules, making them compatible with biological systems. Surface functionalization enables adsorption or attachment of various molecules or antigens, which subsequently can be targeted to the desired cell population for immune recognition or a therapeutic effect. In this review, properties of carbon nanotubes and their clinical applications such as medical diagnostics and drug delivery are being discussed. Here, antibacterial as well as antifungal activity of carbon nanotubes are also being reviewed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    95
    Citations
    NaN
    KQI
    []