Understanding the cooling mechanisms of hot carriers in ultrathin GaAs layers

2021 
Hot-carrier solar cells could overcome the Shockley-Queisser limit by having electrons and holes at a higher temperature than the lattice. To generate these hot carriers under concentrated sunlight, the thermalization rate should be as low as possible. Our objective in this presentation is to quantify the influence of different thermalization mechanisms. We determine the carrier temperature in ultrathin GaAs absorbers using continuous-wave photoluminescence and identify distinct surface and volume thermalization contributions. We explain the origin of these contributions using theoretical models involving non-equilibrium LO phonon populations and thermionic emission. We implement these mechanisms in detailed balance calculations for further understanding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []