Calibration-Free Laser-Induced Plasma Analysis of Nanoparticle-Doped Material Using Self-Absorption Correction Methodologies:

2018 
The qualitative and quantitative analysis of doped nanomaterial containing iron (Fe) and tin (Sn) nanoparticles was investigated using laser-induced breakdown spectroscopy (LIBS). Doped nanoparticles were prepared via co-precipitation and hydrothermal processes. The emission spectra of ablated plasma of doped material revealed the existence of different species in the doped nanomaterial. Simple calibration-free LIBS (CF-LIBS) and internal reference self-absorption correction (IRSAC) CF-LIBS approaches were applied to emission spectra of nanomaterial for quantitative analysis. For both approaches, different spectroscopic parameters such as plasma temperature and electron number density were also determined. Plasma temperature was estimated using a Boltzmann plot and Saha–Boltzmann plot while electron number density was estimated by Stark broadening methods and Saha–Boltzmann equations. Results of both calibration-free approaches were compared with a weight percentage method and other recognized techniques ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    4
    Citations
    NaN
    KQI
    []