language-icon Old Web
English
Sign In

Piercing the chessboard

2021 
We consider the minimum number of lines $h_n$ and $p_n$ needed to intersect or pierce, respectively, all the cells of the $n \times n$ chessboard. Determining these values can also be interpreted as a strengthening of the classical plank problem for integer points. Using the symmetric plank theorem of K. Ball, we prove that $h_n = \lceil \frac n 2 \rceil$ for each $n \geq 1$. Studying the piercing problem, we show that $0.7n \leq p_n \leq n-1$ for $n\geq 3$, where the upper bound is conjectured to be sharp. The lower bound is proven by using the linear programming method, whose limitations are also demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []