Triangle-Shaped Tellurium Nanostars Potentiate Radiotherapy by Boosting Checkpoint Blockade Immunotherapy

2020 
Summary Checkpoint blocking-based immunotherapy has been proved to be effective for the treatment of cancer, but its dependence on T cell infiltration has limited its effectiveness across patients. Radiotherapy (RT) is becoming the most common method of clinical tumor treatment but can occasionally cause systemic tumor rejection. Here, we demonstrate a simple one-pot hydrothermal method to synthesize tellurium (Te) nanostars (GTe-RGD) and offer a treatment strategy that combines GTe-RGD-potentiated RT with checkpoint blockade immunotherapy for efficient and systemic tumor elimination. In mouse models of breast cancer, GTe-RGD-potentiated RT not only eradicated primary tumors but also elicited antitumor immunity to inhibit growth at distant sites by enhancing cytotoxic T lymphocytes when combined with an immune checkpoint inhibitor. Furthermore, the triggered release of tumor-associated antigens and cytokines can effectively reduce the percentage of M2 macrophages with enhanced antitumor activity. Thus, this simply synthesized Te-based nanomedicine, with radiation-driven immunotherapy, offers an attractive clinical alternative for tumor treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    22
    Citations
    NaN
    KQI
    []