Asymmetries in numerical density of pyramidal neurons in the fifth layer of the human posterior parietal cortex.

2012 
Background/Aim. Both superior parietal lobule (SPL) of dorsolateral hemispheric surface and precuneus (PEC) of medial surface are the parts of posterior parietal cortex. The aim of this study was to determine the numerical density (NV) of pyramidal neurons in the layer V of SPL and PEC and their potential differences. Methods. From 20 (40 hemispheres) formaline fixed human brains (both sexes; 27- 65 years) tissue blocks from SPL and PEC from the left and right hemisphere were used. According to their size the brains were divided into two groups, the group I with the larger left (15 brains) and the group II with the larger right hemisphere (5 brains). Serial Nissl sections (5 μm) of the left and right SPL and PEC were used for stereological estimation of NV of the layer V pyramidal neurons. Results. NV of pyramidal neurons in the layer V in the left SPL of brains with larger left hemispheres was significantly higher than in the left SPL of brains with larger right hemisphere. Comparing sides in brains with larger left hemisphere, the left SPL had higher NV than the right one, and then the left PEC, and the right SPL had significantly higher NV than the right PEC. Comparing sides in brains with the larger right hemisphere, the left SPL had significantly higher NV than left PEC, but the right SPL had significantly higher NV than left SPL and the right PEC. Conclusion. Generally, there is an inverse relationship of NV between the medial and lateral areas of the human posterior parietal cortex. The obtained values were different between the brains with larger left and right hemispheres, as well as between the SPL and PEC. In all the comparisons the left SPL had the highest values of NV of pyramidal neurons in the layer V (4771.80 mm-3), except in brains with the larger right hemisphere.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []