Structure and Function of Tryptophan–Tyrosine Dyads in Biomimetic β Hairpins

2019 
Tyrosine–tryptophan (YW) dyads are ubiquitous structural motifs in enzymes and play roles in proton-coupled electron transfer (PCET) and, possibly, protection from oxidative stress. Here, we describe the function of YW dyads in de novo designed 18-mer, β hairpins. In Peptide M, a YW dyad is formed between W14 and Y5. A UV hypochromic effect and an excitonic Cotton signal are observed, in addition to singlet, excited state (W*) and fluorescence emission spectral shifts. In a second Peptide, Peptide MW, a Y5–W13 dyad is formed diagonally across the strand and distorts the backbone. On a picosecond timescale, the W* excited-state decay kinetics are similar in all peptides but are accelerated relative to amino acids in solution. In Peptide MW, the W* spectrum is consistent with increased conformational flexibility. In Peptide M and MW, the electron paramagnetic resonance spectra obtained after UV photolysis are characteristic of tyrosine and tryptophan radicals at 160 K. Notably, at pH 9, the radical photolys...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    1
    Citations
    NaN
    KQI
    []