A direct approach for function approximation on data defined manifolds

2020 
Abstract In much of the literature on function approximation by deep networks, the function is assumed to be defined on some known domain, such as a cube or a sphere. In practice, the data might not be dense on these domains, and therefore, the approximation theory results are observed to be too conservative. In manifold learning, one assumes instead that the data is sampled from an unknown manifold; i.e., the manifold is defined by the data itself. Function approximation on this unknown manifold is then a two stage procedure: first, one approximates the Laplace-Beltrami operator (and its eigen-decomposition) on this manifold using a graph Laplacian, and next, approximates the target function using the eigen-functions. Alternatively, one estimates first some atlas on the manifold and then uses local approximation techniques based on the local coordinate charts. In this paper, we propose a more direct approach to function approximation on unknown, data defined manifolds without computing the eigen-decomposition of some operator or an atlas for the manifold, and without any kind of training in the classical sense. Our constructions are universal; i.e., do not require the knowledge of any prior on the target function other than continuity on the manifold. We estimate the degree of approximation. For smooth functions, the estimates do not suffer from the so-called saturation phenomenon. We demonstrate via a property called good propagation of errors how the results can be lifted for function approximation using deep networks where each channel evaluates a Gaussian network on a possibly unknown manifold.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    8
    Citations
    NaN
    KQI
    []