Ultrashort pulse-induced elastodynamics in polycrystalline materials. Part I: Model validation

2019 
AbstractThe coupled thermal-mechanical response of a polycrystalline metallic film in response to ultrafast optical impingement is investigated. The thermo-elastodynamics formulated in the article considers laser absorption along the axial direction and thermal diffusion along the radial direction to account for the normal and shear stresses initiated by the rapid heating. The generalized formulation incorporates a two-step hyperbolic temperature model that characterizes the energy transport of electrons and lattices as finite in velocity. The coupling of thermal and mechanical fields is established through considering the energy dissipated in the form of propagating thermo-mechanical disturbances. The thermo-elastodynamical response of the polycrystalline film is found to be a strong function of the electron heat capacity that is also temperature-dependent. In addition, grain size effects due to film surface and grain-boundary scatterings are found to impact several thermophysical properties of the mater...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    2
    Citations
    NaN
    KQI
    []