High-Performance CsPbI 2 Br Perovskite Solar Cells with Zinc and Manganese Doping

2019 
Photovoltaic performances of CsPbI2Br solar cells are still lower than those of hybrid inorganic–organic perovskite solar cells, and researchers are exploring ways to improve their efficiencies. Due to its higher thermal stability in comparison with the generally studied hybrid inorganic–organic perovskites, all-inorganic CsPbI2Br has recently attracted great attention. By utilizing the combination of MnCl2 and ZnCl2 particles doping to modulate film growth, it is found that MnCl2 and ZnCl2 particles infiltrate into the holes of the CsPbI2Br lattice through the growth procedure, leading to suppressed nucleation and reduced growth rate. The combination assists to achieve higher CsPbI2Br crystalline grains for increased Jsc as high as 15.66 mA cm−2 and FF as large as 73.37%. It is indicated that a specific combination of ZnCl2-MnCl2 doping can fundamentally improve the film surface morphology, reduce trap density, and suppress the recombination of carriers. Consequently, power conversion efficiency (PCE) is significantly improved from 13.47 to 14.15% compared with the reference device without doping.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    27
    Citations
    NaN
    KQI
    []