THE ECLIPSING BINARY CEPHEID OGLE-LMC-CEP-0227 IN THE LARGE MAGELLANIC CLOUD: PULSATION MODELING OF LIGHT AND RADIAL VELOCITY CURVES

2013 
We performed a new and accurate fit of light and radial velocity curves of the Large Magellanic Cloud (LMC) Cepheid—OGLE-LMC-CEP-0227—belonging to a detached double-lined eclipsing binary system. We computed several sets of nonlinear, convective models covering a broad range in stellar mass, effective temperature, and chemical composition. The comparison between theory and observations indicates that current theoretical framework accounts for luminosity—V and I band—and radial velocity variations over the entire pulsation cycle. Predicted pulsation mass—M = 4.14 ± 0.06 M ☉—and mean effective temperature—Te = 6100 ± 50 K—do agree with observed estimates with an accuracy better than 1σ. The same outcome applies, on average, to the luminosity amplitudes and to the mean radius. We find that the best-fit solution requires a chemical composition that is more metal-poor than typical LMC Cepheids (Z = 0.004 versus 0.008) and slightly helium enhanced (Y = 0.27 versus 0.25), but the sensitivity to He abundance is quite limited. Finally, the best-fit model reddening—E(V – I) = 0.171 ± 0.015 mag—and the true distance modulus corrected for the barycenter of the LMC—μ0, LMC = 18.50 ± 0.02 ± 0.10 (syst) mag—agree quite well with similar estimates in the recent literature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    58
    Citations
    NaN
    KQI
    []