Preparation and Characterization of Albumin Nanoparticles of Paclitaxel-Triphenylphosphonium Conjugates: New Approach to Subcellular Targeting

2020 
Mitochondria have been recognized as important targets in cancer therapy due to their role in the respiratory process of cells. One approach employed for mitochondrion targeting is conjugation of a delocalized cation such as triphenylphosphonium (TPP), with antineoplastic agents, for instance paclitaxel (PTX). In cell cytoplasm, TPP-PTX can come close to mitochondria due to its high positive charge, which has a strong tendency toward the enhanced negative charge of mitochondria. The esteric bond of TPP-PTX can break down in the acidic environment of tumor cells and release the PTX, which can act directly on mitochondria to kill tumor cells. TPP-PTX was synthesized in three steps: Succinic anhydride (SUC) reacted with PTX to achieve succinyl paclitaxel (SUC-PTX), which has an acid-labile esteric bond. Then 2-triphenylphosphonium ethylammonium (ATPP) was prepared by attaching 2-bromoethylammunium bromide to TPP. Finally, a TPP-PTX prodrug was synthesized by attaching these materials. The products of all steps were characterized by thin-layer chromatography (TLC), infrared spectroscopy (IR), and nuclear magnetic resonance (1H NMR, 13C NMR). The purity of the products was determined by HPLC methods. TPP-PTX, as a prodrug, was loaded in to human serum albumin (HSA) nanoparticles by a method inspired by nab-technology with 130–160 nm particle size distribution, PdI=0.166 and Zeta potential −12.6 mV.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    2
    Citations
    NaN
    KQI
    []