Generation and Characterization of Phage-GnRH Chemical Conjugates for Potential Use in Cat and Dog Immunocontraception

2012 
Contents Overpopulation of cats and dogs is a serious worldwide problem that demands novel, safe and cost-effective solutions. The objective of this study was to generate and characterize phage-peptide conjugates with gonadotropin-releasing hormone (GnRH) for potential use as an immunocontraceptive. A filamentous phage vector f5-8 with wild-type phage coat proteins was used as a carrier for construction of chemical conjugates with GnRH, a peptide that acts as a master reproductive hormone. In such conjugates, the phage body plays the role of a carrier protein, while multiple copies of GnRH peptide stimulate production of neutralizing anti-GnRH antibodies potentially leading to contraceptive effects. To generate the constructs, four different GnRH-based peptides were synthesized and conjugated to phage particles in a two-step procedure: (i) peptides were reacted with phage to form a conjugate using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride chemistry (EDC) and (ii) the conjugates were separated from remaining free peptides by dialysis. Formation and specificity of phage-GnRH conjugates were confirmed by three independent methods: spectrophotometry, electron microscopy and ELISA. When the conjugates were tested for interaction with sera collected from cats and dogs immunized with GnRH-based vaccines in independent studies, strong specific ELISA signals were obtained, suggesting the potential use of the conjugates for cat and dog immunosterilization. The ability of the conjugates to stimulate production of anti-GnRH antibodies in vivo was evaluated in mice. While optimization of dose, immunization route and adjuvant still requires investigation, our preliminary results demonstrated the presence of anti-GnRH antibodies in sera of mice immunized with such conjugates. Fertility trials in cats and dogs will be needed to evaluate contraceptive potentials of the phage-GnRH peptide chemical conjugates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    3
    Citations
    NaN
    KQI
    []