Boosting the lithium-ion storage performance of dense MnCO 3 microsphere anodes via Sb-substitution and construction of neural-like carbon nanotube networks

2018 
To boost the electrochemical performance of MnCO3 (MC) microspheres, binary SbxMn1−xCO3 (x = 1/3, 1/2 and 2/3) microspheres, labeled SMC-12, SMC-11 and SMC-21, respectively, were prepared using a solvothermal method. A 3D conductive network of carbon nanotubes (CNT) was also successfully built from the inside to the surface of the SMC-12 microspheres to promote electronic and ionic transportation. As observed, the microspheres of SMC-12 were larger and had a more uniform distribution compared with pure MC, SMC-11 and SMC-21. Profiting from the introduction of neural-like CNTs networks, the electrochemical performance and the utility of the SMC-12 microspheres (approximately 3.5–7 µm in diameter) were remarkably improved. The obtained CNTs@SMC-12 composite anode delivered 1066 and 572 mAh g−1 at current densities of 500 and 5000 mAg−1 after 200 cycles, respectively, which were much higher than the 737 and 297 mAh g−1 of bare SMC-12. With the successful construction of a 3D “neural”-like CNTs conductive network for the Sb1/3Mn2/3CO3 (SMC-12) microsphere, the rate performance, the cyclic stability, the utility of the large size SMC-12 microspheres are remarkably promoted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []