Developmental Antecedents of Adult Macaque Neurogenesis:Early-Life Adversity, 5-HTTLPR Polymorphisms, and Adolescent Hippocampal Volume

2021 
Abstract Introduction: Attenuated adult hippocampal neurogenesis may manifest in affective symptomatology and/or resistance to antidepressant treatment. While early-life adversity and the short variant (‘s’) of the serotonin transporter gene's long polymorphic region (5-HTTLPR) are suggested as interacting risk factors for affective disorders, no studies have examined whether their superposed risk effectuates neurogenic changes into adulthood. Similarly, it is not established whether reduced hippocampal volume in adolescence, variously identified as a marker and antecedent of affective disorders, anticipates diminished adult neurogenesis. We investigate these potential developmental precursors of neurogenic alterations using a bonnet macaque model. Methods: Twenty-five male infant bonnet macaques were randomized to stressed [variable foraging demand (VFD)] or normative [low foraging demand (LFD)] rearing protocols and genotyped for 5-HTTLPR polymorphisms. Adolescent MRI brain scans (mean age 4.2y) were available for 14 subjects. Adult-born neurons were detected post-mortem (mean age 8.6y) via immunohistochemistry targeting the microtubule protein doublecortin (DCX). Models were adjusted for age and weight. Results: A putative vulnerability group (VG) of VFD-reared ‘s’-carriers (all ‘s/l’) exhibited reduced neurogenesis compared to non-VG subjects. Neurogenesis levels were positively predicted by ipsilateral hippocampal volume normalized for total brain volume, but not by contralateral or raw hippocampal volume. Limitations: No ‘s’-carriers were identified in LFD-reared subjects, precluding a 2 × 2 factorial analysis. Conclusion: The ‘s’ allele (with adverse rearing) and low adolescent hippocampal volume portend a neurogenic deficit in adult macaques, suggesting persistent alterations in hippocampal plasticity may contribute to these developmental factors’ affective risk in humans.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    1
    Citations
    NaN
    KQI
    []