Landscape of the regulatory elements for lysine 2-hydroxyisobutyrylation pathway

2018 
Short-chain fatty acids and their corresponding acyl-CoAs sit at the crossroads of metabolic pathways and play important roles in diverse cellular processes. They are also precursors for protein post-translational lysine acylation modifications. A noteworthy example is the newly identified lysine 2-hydroxyisobutyrylation (K-hib) that is derived from 2-hydroxyisobutyrate and 2-hydroxyisobutyryl-CoA. Histone K-hib has been shown to be associated with active gene expression in spermatogenic cells. However, the key elements that regulate this post-translational lysine acylation pathway remain unknown. This has hindered characterization of the mechanisms by which this modification exerts its biological functions. Here we show that Esa1p in budding yeast and its homologue Tip60 in human could add K-hib to substrate proteins both in vitro and in vivo. In addition, we have identified HDAC2 and HDAC3 as the major enzymes to remove K-hib. Moreover, we report the first global profiling of K-hib proteome in mammalian cells, identifying 6 548 K-hib sites on 1 725 substrate proteins. Our study has thus discovered both the "writers" and "erasers" for histone K-hib marks, and major K-hib protein substrates. These results not only illustrate the landscape of this new lysine acylation pathway, but also open new avenues for studying diverse functions of cellular metabolites associated with this pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    45
    Citations
    NaN
    KQI
    []