Ground and Excited State First-Order Properties in Many-Body Expanded Full Configuration Interaction Theory.

2020 
The recently proposed many-body expanded full configuration interaction (MBE-FCI) method is extended to excited states and static first-order properties different from total, ground state correlation energies. Results are presented for excitation energies and (transition) dipole moments of two prototypical, heteronuclear diatomics---LiH and MgO---in augmented correlation consistent basis sets of up to quadruple-$\zeta$ quality. Given that MBE-FCI properties are evaluated without recourse to a sampled wave function and the storage of corresponding reduced density matrices, the memory overhead associated with the calculation of general first-order properties only scales with the dimension of the desired property. In combination with the demonstrated performance, the present developments are bound to admit a wide range of future applications by means of many-body expanded treatments of electron correlation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    3
    Citations
    NaN
    KQI
    []