Proximal and Distal Nephron-specific Adaptation to Furosemide

2021 
Furosemide, a widely prescribed diuretic for edema-forming states, inhibits sodium reabsorption in the thick ascending limb of the nephron. Tubular adaptation to diuretics has been observed, but the range of mechanisms along the nephron has not been fully explored. Using morphometry, we show that furosemide induces renal tubular epithelial hyperplasia selectively in distal nephron segments. By comparison, we find progressive cellular hypertrophy in proximal and distal nephron segments. We next utilize single cell RNA sequencing of vehicle- and furosemide-treated mice to define potential mechanisms of diuretic resistance. Consistent with distal tubular cell hyperplasia, we detect a net increase in DCT cell number and Birc5, an anti-apoptotic and pro-growth gene, in a subset of DCT cells, as the most prominently up-regulated gene across the nephron. We also map a gradient of cell-specific transcriptional changes congruent with enhanced distal sodium transport. Furosemide stimulates expression of the mitogen IGF-1. Thus, we developed a mouse model of inducible deletion of renal tubular IGF-1 receptor and show reduced kidney growth and proximal, but not distal, tubular hypertrophy by furosemide. Moreover, genes that promote enhanced bioavailability of IGF-1 including Igfbp1 and Igfbp5 are significantly and differentially expressed in proximal tubular segments and correspond to IGF-1R-dependent hypertrophy. In contrast, downstream PI3-kinase signaling genes including Pdk1, Akt1, Foxo3, FKBP4, Eif2BP4, and Spp1 are significantly and differentially expressed in distal nephron segments and correspond to IGF-1R-independent hypertrophy. These findings highlight novel mechanisms of tubular remodeling and diuretic resistance, provide a repository of transcriptional responses to a common drug, and expand the implications of long-term loop diuretic use for human disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    111
    References
    0
    Citations
    NaN
    KQI
    []